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Propagation of TE Modes in Dielectric

Loaded Waveguides

R. SECKELMANN, MEMBER, IEEE

Abstract—The propagation of TE.O modes in rectangular wave-

guides that contain two dielectric slabs parallel to the narrow wall
and extending over the full height of the guide is investigated. Wave-
gnide and dielectric are assumed to be lossless and infinitely long.
Apart from these restrictions, the dielectric slabs may have arbitrary

thickness, position, and dielectric constant. The analysis is restricted
to TE.O modes with the E-field parallel to the narrow guidewall. The

guide containing only one dielectric slab is covered by this analysis.

The even modes n= 2, 4, 6, . . . of the guide with two slabs corre-

spond to the odd modes n’ =n/2 = 1, 2, 3, . . . of the guide with one
slab half the width of the guide with two slabs.

For six relative dielectric constants (~= 2.25, 4.00, 9.00, 12.25,

16.00, 25.oo) the cutoff frequencies for TE 10, 20, 30, 40, 60 modes

and the normalized propagation constants for TE 10 and TE 20 modes

between their respective cutoff frequencies and a frequency slightly
above the second- and fourth-order mode cutoff frequency for the
empty guide, respectively, have been computed for a large range of
slab thicknesses and slab positions. Selected results are presented
graphically.

These results are discussed. The parametric dependence of field

distributions, of normalized characteristic impedances, of the ratio of

cutoff frequencies (fractional bandwidth), and of the ratio of mag-
netic field components (ellipticity) are illustrated.

LIST OF SYMBOLS

h = waveguide height (meters)

2W =waveguide width (meters)

o!=a/’w=)
vvaveguide dimensions as shown in

8=d/w= }Fi 1 with ~Y6+7=1
~=,,w=) g

ix, iU, i.= unit vectors

X, Y, z = right-hand coordinate system as shown

in Fig. 1 (meters)

4 =x/w= normalized x-coordinate

B = (2Tr/AO)W = free-space propagation number (fre-

quency parameter)

B.= (27r/A,)w = normalized cutoff frequency

K = (2 Tr/~g)W = longitudinal propagation number in

the guide

P = (2T/ke)W = transverse propagation number in

empty part of guide

Q= (2Tr/Li)To= transverse propagation number in the

dielectric

PI,”’. PIj= electrical widths of waveguide sections

(radians)

O= phase angle (radians)

A, C, D =relative amplitudes
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PO= free-space permeability ( V.s. A –1. w-])

e. = free-space dielectric constant

(A. s. v-’ .??-’)

e = reIative dielectric constant of dielectric-+
E= ;=E8 = electric field (V. m-’)

+ E.= normalizing electric field (V. tit-’)

H=izH=+iJ7v = magnetic field (A. m-l)
Ho= normalizing magnetic field (A . m-l)

20= wave impedance of free space (V. .4-’)

Zw = wave impedance of guide (V. .4-’)

Zi, 2., Z,= characteristic impedances of guide

(V.A-l)
zi, z. = normalized characteristic impedances

Q = fractional bandwidth

ELL = ellipticity

INTRODUCTION

T

HE EXACT SOLUTION of propagation prob-

lems in waveguides containing dielectric slabs

often serves as a basis for perturbation calcula-

tions for the same problem in waveguides containing

ferrite [13 ]. It is for this reason that some of the previ-

ous anal yses have been performed [7], [14] and that

the one presented here has been undertaken. Applica-

tions of these results are shown elsewhere [11], [15],

[17].

Previous analyses of propagation of TE.O modes in

rectangular waveguides which contain dielectric slabs

have, in general, been restricted to two cases i.e., where

the dielectric slab is placed a) against a waveguide wall

[2], [3], [5], [7], [9], [1 O], orb) in the center plane of

the waveguide [3], [5], [7], [8], [11]. A few more

special cases have been considered by investigators deal-

ing with ferrite applications in the microwave region

[7], [13]. For a rather general position of the dielectric

slab, expressions to obtain the propagation constant

have been given [6], [!J ] and certain phase-shift charac-

teristics of the loaded guide have been calculated [12].

The present analysis deals with a rectangular wave-

guide that contains two dielectric slabs parallel to the

narrow walls and extending over the full height of the

guide. The slabs are placed symmetrically with respect

to the center E-plane of the guide. Apart from this

restriction, the slabs have arbitrary position, thickness,

and dielectric constant. Only TEnO modes with E-fields

parallel to the narrow guidewall are considered. The

guide and the dielectric are assumed to be lossless and
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infinitely long. lhraveguides containing only one dielec-

tric slab are covered by this analysis.

.4 compact but complete theoretical treatment of the

problem is given. The parametric dependence of the

primary computer results, that is, the normalized

cutoff frequencies and propagation constants, and of

secondary results, such as impedances, field distribu-

tions, and fractional bandwidths, is illustrated.

THEORY

Figure 1 shows the cross section of a rectangular,

dielectric loaded waveguide in a rectangular coordinate

system. The broad dimension of the guide extends along

the x-axis; y is the direction of propagation of fields in

the guide; the height h of the guide extends in the z-

direction; a, c, d, w are waveguide dimensions along the

x-axis. fl = CW{poeO is the free-space propagation con-

stant; k is the propagation constant in the guide in the

direction of the guide;@ in the empty region and q h the

dielectric are propagation constants transverse to the

direction of the guide and the electric field. Instead of

these symbols, dimensionless quantities will be used

throughout the analysis. These are obtained by either

Fig. 1. Waveguide with dielectric slabs.

all

all

odd

even

multiplying or dividing the quantities given above by

w, e.g., B =flw, K=kw, P=pw, Q=qw, MId ~== x/w,

a=a/w, y=c/w, 6=d/w, where a+y+6= 1.

Field Distribution

It suffices, because of the symmetry of the Ic,aded

guide, to consider the regions I, II, III of Fig. 1, SC)that

O<x<w or O~g5~ 1. All fields vary as exp j(tit--ky),

so that d/dt=jtiand d/dy = —.jk. This t and y depend-

ence is omitted in all equations. The relative permeabil-

ity of the dielectric is assumed to be unity,

The E-fields in the various regions of the guide can

tentatively be described by the dimensionless shape

function g(~) = EZ(qi)/Eo given in Table I. E. is a nor-

malizing field strength. The compatibility of these as-

sumptions with Maxwell’s equations has to be sh~own.

These equations for the problem considered here re-

duce to

+ dE, dE,
V X E== iz –— — iu ~ = — jw,uo(iJZz + ivHU) (1)

ay .

Vz=o

and from (l), (2), and (3)

The boundary conditions are

ll~.~g = E, is continuous, Ht~~~ = Hu is continuous (6)

Normalized II-field distributions, obtained with (1),

are also given in Table 1.

TABLE I

NO~MALIZIZD FIELD DISTIUBUTION IN WAVEGUIDE CONTAINING DIELECTRIC SLABS
.——

I

c Cos P(l – 4)

I
c

I
Cchl P/(1 –@:

C sin P(1 – ~) C(I – o) Cshl P[(l –@;

D: COS(@fJ + 6)

– c: CosP(l – 0) Ipl IPI(l -4)– c; – CT ch
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The fields of Table 1, together with (5), give for the

propagation constants the relations

p2=B2_K2 (7)

Q2 = @2 – K2 (8)

P2 = Q2 – (e – l)IP. (9)

For any Q2 >0 there exists a P2$0, the sign depend-

ing on (E — 1)B2. Q2 >0 describes a sinusoidal field dis-

tribution in the dielectric slab; P2 >0 describes a sinus-

oidal field distribution in the empty waveguide region.

For P2 <0 the field distributions in the empty wave-

guide regions are hyperbolic functions which describe a

quasi-exponential decay. P2 = O gives the intermediate

function where E. and H. have a constant slope in the

empty part of the guide and where H~ is constant. In

this particular case, the fields in the empty region are

described by functions as + exp (Pq5) = ~, since P = O.
When Q2 <0, P2 <0 also. Then the boundary conditions

(6) are violated. Hu is no longer continuous. Therefore,

QZ~O for all TE.O modes. Q2 = O is reached at infinitely

high frequencies. The assumptions of Table I cover only

and all allowed field distributions for TEnO modes and

are thus justified.

These field distributions are illustrated by Fig. 2 for

the first odd (n= 1) and first even (n= 2) mode. The

even modes (n= 2, 4, 6, . . . ) of the waveguide under

consideration with two symmetrically placed dielectric

slabs, where 2W is the waveguide width, correspond to

the odd and even modes (n’=n/2 =1, 2, 3, . . . ) of a

waveguide with only one dielectric slab, where w is the

waveguide width; that is, the left half of Fig. 1 only.

With the frequency increasing from cutoff to infinity,

K/B increases from O to ~~. For K= B the field dis-

tribution between the two dielectric slabs represents a

pure T EM field for all odd TEmO modes in the waveguide

considered.

The determinantal equations for B (K) —e.g., cutoff

frequencies for K = O—or K(B) —propagation constants

for given frequencies—are found by expressing the

widths of the empty sections of the guide in equivalent

widths of a guide completely filled with the dielectric.

The field distribution in the slabs is not changed by

this replacement. The total electrical width (2we) of

this equivalent guide is tir for a TEmO mode.

At the boundary between regions I and II of Fig. 1,

Table I and (6) yield for frequencies Os K/B< 1 and

with pI=P~, p2= Qa+tl

EOA sin pl = EOll sin p2 (lo)

jEoA P COS /J1/0.)/.l~W = jEODQ COS p2/w&ozv (11)

. UPOW . UIJOW
z.(a) = – E.(a) /jH,(a) = j ~tgpl =J — tgpzc (12)

Q

copOw/P = ZV and upOw/Q = ZQ are the transverse wave

3

2

I

o

-1

-2

-3

I I

o 0

-1 -1

I

o

-1

IB=zK,s=314

I

o

-1
IB.W3=,33

Fig. 2. Normalized field distribution in waveguide with
dielectric slabs.

impedances of the empty and loaded waveguide regions,

respectively, for waves traveling in i x direction. Z.(a)

is the impedance experienced by a wave traveling into

the shorted waveguide of impedance ZP and length pl

or impedance ZQ and length pz. From (12) follows the

equivalent length

f“=arct’(%+ (13)

Similar considerations for higher frequencies, odd and

even modes, and both slab boundaries lead, for the vari-

ous waveguide regions, to the actual and equivalent

electrical widths of Table II. For O~K/B <1, p~ is
defined for odd modes by l/P tg p~= l/Q tg p5, for even

modes by tg pi/P = tg p5/Q, and for other frequencies

accordingly. Table I I is the skeleton for the computer

program used to determine the cutoff frequencies

B (K = O) and propagation constants K(B). The de-

terminantal equation is in both cases

PfJ = nn/2 for TEnO modes. (1+)
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TABLE II

ELIZCTRICAL WIDTHSIN WAVEGUIDES CONTAINING DIELECTRIC SLABS

—: —\

+- 0“’”<1-I P.

.— l–—l-—
Equivalent I

~ gtgp,
P2 arctg

()P

II
i

P3 I Qa

III I P4
I

Equivalent III
,trctg Q ‘(-’)n)

P5
[(-)

tg p4
P 1

1+11+111 /P61 P2+P3+I%

K/B= 1 1< K/” .< @

a! I
––l————””--” -

arctg (QpJ

1

Q(! I Q(3

o 171
1

— odd modes even —1
———. —

0 arctg (QpJ =+1)”(%)((-’)”’’’”1
P2+P3+P5

I
P2+P3+P5

—.—

TABLE III

PHASE ANGLE AND RELArI VE AMPLITUDE OF FIELDS IN WAVEGUIDES CONTAINING D1r%L~crruc SLABS

O~K/B<l

e all PZ — Qa
— —

A/D all sin p.Jsin PI

C/D ! odd I sin (P2 + p3)/cos pi

C/D I even I sin (P2+ PJ/sin p4

K/” = 1

P2 — Qa IZ — Qa

sin pJpI sin p,/sh PI

sin (PZ+ pJ I sin (PZ+ W)/ch pi

sin (P2+ pJ/p4 I sin (pz + PJ /sh pi

———

Applying (6) to the boundaries of regions 1/11 and to the dielectric loaded \vaveguide yields for the im-

11/111 of Fig. 1 yields the phase angle (3 and the relative pedance based on the total longitudinal current

amplitudes of Table I. They are given in Table III in

terms of the electrical \\-idths defined in Table II.

ImPedan ces

z,= 2Pu/(2wJHo~’ I ,,4,1 do)’

The pow;er flolving through the lvaveguide is, ~vith

S = 2w11 as the waveg{lide cross section,

=Zo: j:&)@/(Jo’ l,(@) ld4)2, (17)

for the impedance based on the maximum voltage

P. =
$

;(J3 x ~.*)ds = 2z4/’z~:: J’ ‘, g’(o)d (15) B h

/s

1
z. = (&Jl) ‘:2PU = ,?0~ & g’(,) )drj, (18)

~~herc g(d) = J!i,\~lJ = 11~/lYu m given in Table I. The
o

‘{~~-a~~e” impedance of the guide is, with Z(] = VI-L(J m and for the impedance based on the ratio o [ maximum

voltage by total current

Z.=g=y=zo:. (16)
z z, = 42,2, = 20-: ;

Various definitions for “characteristic”
,/

impedances for

empty waveguides have been proposed and discussed The integrals in the impedance

[1], [4], [18]. Applying three common definitions [1] written as

expressions ma:~’ be
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TABLE IV

INTEGRALS on CHARACTERISTIC IMPEDANCE FUNCTIONS FOR TEIO ANIJ TE20

Int1

Int II

Int III

In I

In II

In HI

all

(n = 1,2)

—

all

(n = 1,2)

odd

(n = 1)

even

(n = 2)

all

(n = 1,2)

all

(n = 1,2)

— ————

odd

(n = 1)

even

(n= 2)

O~K/B<l K/B = 1 l<K/B~~i

[
sin 2 PI

1
a2

; l–— [1 a
[

sh pl ch pl

2p, T # z p,
-1

1
—

[
sin [2 (PZ + p3)] — sin 2p2

; 1 – ————
2p3 1

=fwu’hp’hp’+
[

Sin 2P4
; l–—— 1 [1y22

[

~ s’ P4 ch p4

2p4 i iy i p’
–1 1

a (1 — Cospl)/pl I a(a/2) I a(ch PI — 1)/pI

Jo gyc),d+ = A2hltI + Whltn + C,h’ltm (20,

J-o’lIg(+) d@=~In I+ DIn II+ CIn III. (21)
for all 6 and B (24)

s1 s1lim g%i@ = *, lim

For higher-order modes the direction of the longitudinal J+o
gd~ = ~

o 3+0 o T

curren; flow changes over the guide width. The absolute for all c and B (25)

value [ g(~) ] in (1 7), (19), and (21) takes this reversal 1
into account. The evaluation of j] g(rj) I a?q5 is generally s s1lim g2dq5 = ~, lim gd~ = ~
quite complicated. For the TEIO and TEZO modes, how- 6+1 0 8+1 0 T

ever, Ig(@)l =g(@), and Int I, Int II, Int III and In I, for all e and B (26)
In II, In 111 are as given in Table IV.

For TEIO and TE20 modes the normalizing field s1 8 s1lim g~d~ = — , lim gd~ = ~
strength EO is the maximum field strength in the guide, B-. Q 2 B+cc o r

when for 6>0 and c >1. (2’7)

C=l if p, + p3 < 7r/2
For e =1, C?= O, ~ = 1 one obtains the expressions for

D=l if P.I + p3 > 7/2. (22) the empty or homogeneously filled waveguide

The asymptotic values for the characteristic impedances

are easily obtained for these two modes with
17r’

()

B h B jl
Z,=T ~ ZOFG>Z. =2 ZOFG>

(“)
lim $ = d;
B4m 2wh

for all ~ and 8 (23)
P. = — EoHo.

4
(28)
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For B-m and 6>0, e> 1 one obtains

17r~

()

1 h 1 h
zi=T ~ ZOZG1 ZU=:2ZOZZ1

2dh
Pu = ~ EOHO (29)

\vhere 2dh is the cross section of the dielectric slabs. At

relatively high frequencies, all the power flow is con-

centrated in the dielectric slabs.

COMPUTER RESULTS

Normalized cutoff frequencies have been calculated

for TE.O modes of the guide of Fig. 1 with n = 1, 2, 3, 4, 6

for six relative dielectric constants (2.25, 4, 9, 12.25,

16, 25), fifteen slab thicknesses (including 0% and 100%

filling factor), and a maximum of eleven positions of the

slab in the guide. Normalized prc~pagation constants

have been calculated for TEIO and ‘l’EZO modes between

their respective cutoff frequency and a frequency some-

what above the second- and fourth-order mode cutoff
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[aTE60
C.4 /

.05
.10

.25
-J

.40 /1

~

.05 ,fl.
.10 ,

.25, /

v .4;
‘\

‘.. -

.05
.10 /

a++ .25
.40 ----- . TE20

frequency of the empty guide, respectively—again for

the relative dielectric constants given above, five slab

thicknesses (5, 10, 15, 25, 4070 filling factor), and a

maximum of eight slab positions. The position parame-

ter a +iS/2 gives the distance between the left guidewall

and the center plane of the left slab as a fraction of half

the guide width. For the odd modes the position is

varied between the slabs touching the guidewalls

(a+8/2 = 6/2) and the slabs touching each other in the

center of the guide (a+6/2 = 1 —8/2). For even modes

it suffices, because of the symmetry of the field distribu-

tion, to vary the position between (he slabs touching the

wall and moving them half way towarcl each other

(a+~/2 = 0.5). For even modes the cutoff frequencies

and propagation constants are the same for a+~/2 = ~

and a+6/2 =1—r.

The results for the full range of parameters are given

numerically and graphically in a General Electric pub-

lication [16 ]. In this paper, selected results are presented

graphically. Normalized cutoff frequencies are shown in

Fig. 3. Normalized propagation constants are shown

in Fig. 4.

9
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2

I

o

LB]
6=[6 TE60 -/ z

~

.05 m“
.10

TE40 .05
/’

, ~ .10

‘1.
/

-y--- “40 .25 ,,”
t

~~f,
—

95- -
e =25

8; -

7 .10

6 \. TE40 .05

.10 //’ _

1 \ .40

~ “,~ .10
7=, -—----~+E20; I ~= ‘-

l’. — J7L”–=

Fig. 3. Normalized cutoff frequencies with normalized slab thickness (6) as parameter,
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Fig. 4. Normalized propagation characteristics with normalized slab position (a +3/2) as parameters.
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Exa rnples

a)

b)

c)

Guide WR 137, width 1.372 inches, two slabs each

0.069 inch thick, 0.137 inch between left ~vall and

center of left slab, relative dielectric constant e =9,

w =width/2 =0.686 inch, 8 =0.1, a+8/2 =0.2.

Jl”anted: TEIO and TEZO cutoff frequencies and

guide wavelengths at 5.46 GHz.

One finds B.(TEl”) = 1.44, 13c(TEto) = 2.31. With

L = 27rw/B, one obtains Xc(TEl,) = 7.6 cm, h~(TE,o)

=4.74 cm, and ~C(TEl”) =3.9.5 GHz, J.(”1’E,O)

=6.2 GHz. .~t 5.46 GHz one finds B =2 and

K(TEI,)=l.58, corresponding to h,= 2~w/A”

= 6.94 cm; no propagation for the TEZO mode.

Guide LT7R 90, width 0.9 inch, one slab w-ith

e = 16, 0.090 inch thick, 0.45 inch between wall

and center of slab. Wanted; cutoff frequencies of

the two lo~vest-order modes and guide ~vavelength

at 10 GHz for the lowest-order mode. W’ = width

=0.9 inch, L3=O.1O, a+ii/2 =0.5. B,(TE~O’)

= BC(TEZ,,) of guide with two slabs and width 1.X

inches and w = width/2.

One finds B.(TE1o’) = 1.51, B.(TEz,’) = B.(TEw)

=5.82. With & =27rzw’/BC one obtains XC(TEIO’)

=9.52 cm, AC(TEZO’) =2.46 cm, and j.(TElo’)

=3,16 GHz, ~C(TE,O’) = 12.45 GHz. At 10 GHz

one finds B =2mw’/huG4.8 and K= 13.03, yielding

h.=1.l cm.

The TEZO solutions ~vith a+6/2 = 0.5 are equiva-

lent to the TE1o solutions mith the two slabs

touching each other, where a+8/2 = 1 –6/2,

i.e,, 2K(TEN, B, cL+il/2 = 11–tj/2) =~”(TE,o,

2B, cY+8/2 =0.5), 2BC(TE10, a+8/2 = 1 –a/2)

=.B,(TE,O, a+~/2 =0.5).

DISCLTSSION OF Rwm’rs

The influence of a thin slab on the cutoff frequencies

(Fig. 3) becomes stronger the closer the slab is placed to

the lines of maximum electric field strength in the empty

guide. Iyith increasing slab thickness this influence is

less and less related to the empty guide field distribu-

tion. For thick slabs it is weakest when the slabs touch

the guidewalk; for odd modes it is strongest m-hen the

slabs are in the center of the guide and touch each other,

and for even modes it is strongest whlen each slab is in

the center of half a guide width. At a certain thickness

the cutoff frequency is nearly independent of the slab

position (see T’E30 ,40,60).

The effect of the cJielectric slab on the field distribu-

tion in the waveguide is to concentrate within the slab

with increasing frequency an increasing fraction of the

total energy flowing through the guide. The phase veloc-

ity approaches asymptotically 1 /<~ times the velocity

of light in free space. The parametric clependence of the

E-field clistribution is illustrated by Fig. 5. An interest-

ing effect occurs ~-hen propagation characteristics cross

over each other, as seen in Fig. 4 for (E= 25, ~ =0.10. If

I

I
\i

TEIO, B.20
h

6=90, Z)=02, PARAMETER,=+ ~/2 TE20, B.30

TEIO, B=20 c , 9,o, ~ +8/2= O 5, PARAMETER. B TE 20, B= 3,12

TFIO, B=20 8=02,0 +B12=05, parameter s TE20,13=31)

I

I

I
&--.i

e =12.25,8=0 [PARAMETER a+8/2 TE20, B=63

Fig. .5. Normalized E-field distribution in waveguide with
dielectric slabs.

the empty regions in half the waveguide (1 and III,

a and ~ in Fig. 1) are not equal, a wave may treat them

at high frequencies as essentially equal with the value of

the narrower region. This waveguide shows then a larger

propagation constant and field concentration at a given

frequency than a guide with a =y does. An E- fjeld

distribution for such a case is shown in the lowest part

of Fig. 5.

In the case of thin slabs, where the cutoff frequencies

for higher modes are strongly influenced by the empty

guide field distribution, the propagation characteristics

for a given e and ~ may all cross in one point. At that

frequency the propagation constant is independent t of

the slab position (see [16], TE1O, e =9, d = 0.2). Employ-

ing lossy dielectrics one may use the frequency-depen-

dent field concentration to construct dissipative field dis-

placement filters [17].

Examples of the parametric dependence of nor-

malized characteristic impedances

are given in Fig. 6. Examples of the Parametric det)en-

den:e of the f~actional

cutoff frequencies

B.(TE,,)
L?2X=

BC(TEIO)

are shown in Fig. 7.

bandwidths, ‘i. e., the ratio:, of



526 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES NOVEMBER

—1

‘I

I

-
0 2 3

TE 10

I I I 1

,3 2 I o

21

;1

‘B
t I ( I

o I 2

TE 10

[

If

‘I

I

4

3

2

z“

, :1
u1111

9521

1
t,llll—B

o
0 2 3

4

3

2

1

0

I I \ I 7

9 4 I

A

3

2

I

&-—lB
1 1 I o

2 3
TE 10

,– ,,,

5 2 I

ZI

I

—B

( I 1 1
0 2 4 6

TE 10 TE 20
,:9, 8=02, PARAMETER a + (8/2)

1 1 1

3 2 I

Zv

‘B
1 1 I \ I

o I 2 3
TE 10

6=9, a+ (8/2)=0 5,

tl; llll—B

0 2 3

TE 10
8=0.2, .a.(w=o 5,

1 1 1 I I

,3 ,2 I o

‘I

L=L-J--
0 2 4

TE 20

PARAMETER 8

---r

16

‘I

I

I I 1

9 4 I

+
—0

1 1 1 1 I

2 4
TE 206

PARAMETER f

4

3

2

0

\ , l,,

5 2 I

z“

1

—B

\ \ ) I I
o 2 4 6

TE 20

1 I
4

3

2

2“

—B

o I I I I I
o 2 4 6

TEzO

4

3

2

I

I 1 I

16 9 4

z“

J
—B

o 1 I I 1 1
0 2 4

TE 206

Fig. 6. Normalized characteristic impedances of waveguide with dielectric slabs.
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Fig. 7. Fractional bandlridths of ~vaveguide with dielectric slabs.

The ratio of the magnetic field components, the ellip-

ticity,

ELL(@) = H.(4) /jHu(@)

at the slab boundaries 1/11 and 11/111[ approaches unity

asymptotically, as illustrated in Fig. 8 for TE1o and

TE20 modes for various parameters.
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