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Propagation of TE Modes in Dielectric
Loaded Waveguides

R. SECKELMANN, MEMBER, IEEE

Abstract—The propagation of TE,, modes in rectangular wave-
guides that contain two dielectric slabs parallel to the narrow wall
and extending over the full height of the guide is investigated. Wave-
guide and dielectric are assumed to be lossless and infinitely long.
Apart from these restrictions, the dielectric slabs may have arbitrary
thickness, position, and dielectric constant. The analysis is restricted
to TE,, modes with the E-field parallel to the narrow guidewall. The
guide containing only one dielectric slab is covered by this analysis.
The even modes n=2, 4, 6, - - - of the guide with two slabs corre-
spond to the odd modes n’=n/2=1, 2, 3, - - . of the guide with one
slab half the width of the guide with two slabs.

For six relative dielectric constants (¢=2.25, 4.00, 9.00, 12.25,
16.00, 25.00) the cutoff frequencies for TE 10, 20, 30, 40, 60 modes
and the normalized propagation constants for TE 10 and TE 20 modes
between their respective cutoff frequencies and a frequency slightly
above the second- and fourth-order mode cutoff frequency for the
empty guide, respectively, have been computed for a large range of
slab thicknesses and slab positions. Selected results are presented
graphically.

These results are discussed. The parametric dependences of field
distributions, of normalized characteristic impedances, of the ratio of
cutoff frequencies (fractional bandwidth), and of the ratio of mag-
netic field components (ellipticity) are illustrated.

LisST OF SYMBOLS

h =waveguide height (meters)
2w =waveguide width (meters)
a=a/w =}
d=d/w="}
y=c/w =J
gy 1y, T, =Unit vectors
%, v, g=right-hand coordinate system as shown
in Fig. 1 (meters)
¢ =x/w=normalized x-coordinate
B = (27/\g)w=free-space propagation number (fre-
quency parameter)
B.= (27 /\)w=normalized cutoff frequency
K= (2r/N,)w=longitudinal propagation number in
the guide
P =(27w/\)w=transverse propagation number in
empty part of guide
Q= (27 /N\)w =transverse propagation number in the
dielectric
p1, - - - pg=electrical widths of waveguide sections
(radians)
0 =phase angle (radians)
A, C, D =relative amplitudes

waveguide dimensions as shown in
Fig. 1 with a+4+6+v=1
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o= free-space permeability (V-s-4~L-m™)
eo=1iree-space dielectric constant
(4-s-V1-m1)
—_ e=relative dielectric constant of dielectric
E=i,E,=celectric field (V-m™1)
- Eq,=normalizing electric field (V-m1)
H=1i,H,+1i,H,=magnetic field (4 -m™)
Hy=normalizing magnetic field (4 -m?)
Zo=wave impedance of free space (V-41)
Z,=wave impedance of guide (V-41)
Zi, Zy, Zr=characteristic impedances of guide
(V-47)
%i, 3y =normalized characteristic impedances
Q=fractional bandwidth
ELL=cellipticity

INTRODUCTION
THE EXACT SOLUTION of propagation prob-

lems in waveguides containing dielectric slabs

often serves as a basis for perturbation calcula-
tions for the same problem in waveguides containing
ferrite [13]. It is for this reason that some of the previ-
ous analyses have been performed [7], [14] and that
the one presented here has been undertaken. Applica-
tions of these results are shown elsewhere [11], [15],
[17].

Previous analyses of propagation of TE,, modes in
rectangular waveguides which contain dielectric slabs
have, in general, been restricted to two cases i.e., where
the dielectric slab is placed a) against a waveguide wall
[2], [3], [5], [7], [9], [10], or b) in the center plane of
the waveguide [3], [5], [7], [8], [11]. A few more
special cases have been considered by investigators deal-
ing with ferrite applications in the microwave region
[7], [13]. For a rather general position of the dielectric
slab, expressions to obtain the propagation constant
have been given [6], [9] and certain phase-shift charac-
teristics of the loaded guide have been calculated [12].

The present analysis deals with a rectangular wave-
guide that contains two dielectric slabs parallel to the
narrow walls and extending over the full height of the
guide. The slabs are placed symmetrically with respect
to the center E-plane of the guide. Apart from this
restriction, the slabs have arbitrary position, thickness,
and dielectric constant. Only TE,, modes with E-fields
parallel to the narrow guidewall are considered. The
guide and the dielectric are assumed to be lossless and
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infinitely long. Waveguides containing only one dielec-
tric slab are covered by this analysis.

A compact but complete theoretical treatment of the
problem is given. The parametric dependence of the
primary computer results, that is, the normalized
cutoff frequencies and propagation constants, and of
secondary results, such as impedances, field distribu-
tions, and fractional bandwidths, is illustrated.

THEORY

Figure 1 shows the cross section of a rectangular,
dielectric loaded waveguide in a rectangular coordinate
system. The broad dimension of the guide extends along
the x-axis; ¥ is the direction of propagation of fields in
the guide; the height % of the guide extends in the z-
direction; a, ¢, d, w are waveguide dimensions along the
x-axis. B=wov/jo€e is the free-space propagation con-
stant; & is the propagation constant in the guide in the
direction of the guide; p in the empty region and ¢ in the
dielectric are propagation constants transverse to the
direction of the guide and the electric field. Instead of
these symbols, dimensionless quantities will be used
throughout the analysis. These are obtained by either
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multiplying or dividing the quantities given above by
w, eg., B=PBw, K=kw, P=pw, Q=qw, and ¢=x/w,
a=a/w, y=c¢/w, 6=d/w, where a+vy+8=1.

Field Distribution

It suffices, because of the symmetry of the loaded
guide, to consider the regions I, IT, I1I of Fig. 1, so that
0<x<Lw or 051, All fields vary as exp jlwt—£ky),
so that d/df=jw and 0/8y= —jk. This ¢t and vy depend-
ence is omitted in all equations. The relative permeabil-
ity of the dielectric is assumed to be unity.

The E-fields in the various regions of the guide can
tentatively be described by the dimensionless shape
function g(¢) =E.(¢)/E, given in Table I. E, is a nor-
malizing field strength. The compatibility of these as-
sumptions with Maxwell’s equations has to be shown.
These equations for the problem considered here re-
duce to

— | 0E, . 0F, . . .
VX E==iy— — ty— = — jop,(t:Hx -+ 1,Hy) (1
ay dx
— oM, AH, .
VX H=1, — = {,jweek, (2)
dx dy
—
VE =0 3)
—
VH =0 Y
and from (1), (2), and (3)
— 02 9?2
VXVXE=—|—+4—)E. = ok, (5)
dx? dy?

The boundary conditions are
Eing = E, is continuous, Hiumg = H, is continuous. (6)

Normalized H-field distributions, obtained with (1),

Fig. 1. Waveguide with dielectric slabs. are also given in Table I.
TABLE 1
NorMALIZED FIeLp DIsTRIBUTION IN WAVEGUIDE CONTAINING DIELECTRIC SLABS
'&1’ 11%1/0’ Ez/Eo; ‘Hx/IIO = III‘*’MD/kEO ij/ro = ijwM /kEo
%o'e ‘g,
eé’ioa 0<K/B<1 K/B =1 1 < K/B < +/€ 0<K/B< 1 K/B =1 1 < K/B < +E
1 P 1 | P]
i A sin P A Ash|P A— P A— A——ch| P
0<¢< a a sin Po ¢ s|l¢ Kcos¢ e Kc[]¢
II 0
a<¢<1—ywy all D sin (Q¢ -+ 6) D}{« cos (Qp -+ 6)
P lpl
11t odd C cos P(1 — ¢) C Cch|P|(1 —¢) Ck—sinP(l—da) 0 — c—K—sh|P|(1.—¢)
. P 1 | P]
1~y<¢<1]|even Csin P(1 — ¢) C(l—¢)| Csh|P|(l—¢) —Ck—cosP(l—qS) —-CE ——C——K—chlPl(l—tb)
[
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The fields of Table I, together with (5), give for the
propagation constants the relations

P = B — K> )
Q= B’ — K* (8)
P = (Q? — (e — 1)B ©)

For any 02>0 there exists a P?20, the sign depend-
ing on (e—1)B2% Q2>0 describes a sinusoidal field dis-
tribution in the dielectric slab; P2>0 describes a sinus-
oidal field distribution in the empty waveguide region.
For P?2<0 the field distributions in the empty wave-
guide regions are hyperbolic functions which describe a
quasi-exponential decay. P?=0 gives the intermediate
function where E, and H, have a constant slope in the
empty part of the guide and where H, is constant. In
this particular case, the fields in the empty region are
described by functions as ¢ exp (P¢)=¢, since P=0.
When Q2<0, P2<0 also. Then the boundary conditions
(6) are violated. H, is no longer continuous. Therefore,
Q2>0 for all TE,, modes. 0?=0 is reached at infinitely
high frequencies. The assumptions of Table I cover only
and all allowed field distributions for TE,, modes and
are thus justified.

These field distributions are illustrated by Fig. 2 for
the first odd (m=1) and first even (#=2) mode. The
even modes (n=2, 4, 6, - - - ) of the waveguide under
consideration with two symmetrically placed dielectric
slabs, where 2w is the waveguide width, correspond to
the odd and even modes (#'=%/2=1,2,3,---)of a
waveguide with only one dielectric slab, where w is the
waveguide width; that is, the left half of Fig. 1 only.
With the frequency increasing from cutoff to infinity,
K/B increases from 0 to 4/e. For K=B the field dis-
tribution between the two dielectric slabs represents a
pure TEM field for all odd TE,, modes in the waveguide
considered.

The determinantal equations for B(K)-—e.g., cutoff
frequencies for K =0—or K(B)—propagation constants
for given frequencies—are found by expressing the
widths of the empty sections of the guide in equivalent
widths of a guide completely filled with the dielectric.
The field distribution in the slabs is not changed by
this replacement. The total electrical width (Qw.) of
this equivalent guide is n7 for a TE,, mode.

At the boundary between regions I and 11 of Fig. 1,
Table I and (6) yield for frequencies 0<K/B <1 and
with pi= Pa, ps= Qa6

E()A sin p1 = E()D sin P2 (10)
JEoAP cos pi/wpew = JE,DQ cos ps/wuw (11)
. . WU . WHow
Zy(a) = — Eu()/jHy(a) =i tem =4 tgpe. (12)

wuow,/ P =27, and wuew/Q=Zgy are the transverse wave
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Fig. 2.

impedances of the empty and loaded waveguide regions,
respectively, for waves traveling in £ x direction. Z,(x)
is the impedance experienced by a wave traveling into
the shorted waveguide of impedance Zp and length py
or impedance Zg and length ps. From (12) follows the
equivalent length

Q
pz = arctg (? tg o1 ).

Similar considerations for higher frequencies, odd and
even modes, and both slab boundaries lead, for the vari-
ous waveguide regions, to the actual and equivalent
electrical widths of Table II. For 0LK/B <1, p; is
defined for odd modes by 1/P tg ps=1/Q tg ps, for even
modes by tg pi/P=tg ps/Q, and for other frequencies
accordingly. Table 1I is the skeleton for the computer
program used to determine the cutoff frequencies
B(K=0) and propagation constants K(B). The de-
terminantal equation is in both cases

(13)

pe = nmw/2 for TFE,, modes. 14
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TABLE II
EvLectrICAL WIDTHS IN WAVEGUIDES CONTAINING DIELECTRIC SLABS
Wi Frequenc,, 0< K/B <1 K/B =1 1< K/B < &
I o1 Po a [ P fa
. (@ Q0
Equivalent I P arctg th pt arctg (Qpy) arctg TP th o
|
II p3 Qs Q8 Qs
11X Pt Py 0 v [ Py
odd modes even
. 0\ DY 0\«
Equivalent ITI P arctg [(F) tg p4:| 0 arctg (Qps) arctg [( —1)» <l_1;—l> th p4]
I+4-1T4 111 P p2 + p2 +ps p2+ pz+ps p2 -+ pz +ps

TABLE III
PHASE ANGLE AND RELATIVE AMPLITUDE OF FIELDS IN WAVEGUIDES CONTAINING DIELECTRIC SLABS

Ly,
“Quenc,, 0<K/B<1 K/B =1 1< K/B < /e
) all — Qa — Qo — Qo
A/D all sin pg/sin p; sin p2/p1 sin po/sh py
C/D odd sin (pa + p3) /cos p4 sin (pg + p3) sin (p2 -+ ps3) /ch pg
C/D even sin (p2 + ps) /sin pg sin (oz + ps) /ps sin (pz + pa) /sh ps

Applying (6) to the boundaries of regions I/II and
I1/111 of Fig. 1 yields the phase angle 8 and the relative
amplitudes of Table I. They are given in Table III in
terms of the clectrical widths defined in Table II.

Impedances

The power flowing through the waveguide is, with
S'=2wh as the waveguide cross section,

LEoHy Y
P, = j[ 3(E, X H*)dS = 2wh T f g (¢)do (15)
0

where glp)=£./Ey=H,/H, as given in Table I. The
“wave” impedance of the guide is, with Zy=:v/u/ e,

E& wWa
YT H, & " K 16)
Various definitions for “characteristic” impedances for

empty waveguides have been proposed and discussed
[1], [4], [18]. Applying three common definitions [1]

to the dielectric loaded waveguide yields for the im-
pedance based on the total longitudinal current

Zi=2p, / <2wHo | | d¢>2
Zy — ";J g <¢)d¢>/<f lg(¢>!d¢~>2, am

for the impedance based on the maximum voltage

/ f 2¢)dg,  (18)

and for the impedance based on the ratio of maximum
voltage by total current

—nl

= (Eoh)*/2P,
(L) K 2w

\/ZZ_Zom—»/f | g(9) | dp.  (19)

The integrals in the impedance expressions may be

written as
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TABLE IV
INTEGRALS OF CHARACTERISTIC IMPEDANCE FUNCTIONS FOR TE;g AND TEg;
Freqy .
ency, 0<K/B<1 K/B =1 1 < K/B < +/f¢
Moges
ng,
all o [1 Sin2p1] a [2 ] @ [Shpl ch p; 1]
Al 2 Za ol Rl oI
Int 1 =12 2 2L3 2 PL
all ) sin [2(pz + ps) ] — sin 2p,
211 =
Intll (n=1,2) 2 [ 200 ]
odd v sin 2p4 v v sh ps ch ps
L4 = Y12 L et ihal T
=1 2[1+ 2m ] 2[] 2[ T ]
Int HT
even ¥ sin 2p4 v2 v sh ps ch pg
[-52] | ]| geeeed
(n=2) 2 2013 2 s
all
InI a(l — cos p1) /o1 a(a/2) alch o1 —~ 1)/p
(n=1,2)
In IT ol 8(cos p2 — cos (o2 + p3))/,
n (n _ 172) S p2 C P2 P3))/p3
dd .
© v (sin ps)/ps ¥ v (sh ps)/ps
(n=1)
In ITI —
- 7 (1= cos pi) /s 7 (4v/2) ¥ (ch o — /o
(n=2)
1 1 1 2
f (¢)dé = A*Int1+ D*IntII + C?Int ITT (20) lim f g2d¢ = %, lim f gdp = —
0 €—1 0 €1 0 ™
! for all 6 and B (24)
|g(¢)|dp = A InI+ DInll+ CInIIl.  (21) ) : )
0 lim f g¥d¢ = &, lim f gd¢p = —
For higher-order modes the direction of the longitudinal 50 0 30 0 T
current flow changes over the guide width. The absolute forall eand B (25)
value ]g(qb)) in (17), (19), and (21) takes this reversal L s 9
into account. The evaluation of [|g(¢)|de is generally lim f gd¢ = 1 lim f gddp = —
quite complicated. For the TE;; and TEy modes, how- 61 0 81 0 T
ever, | g(@)| =g(®), and Int I, Int 11, Int IIT and In I, forall eand B (26)
In II, In TIT are as given in Table IV. L 5 L 25
For TEw and TEsy modes the normalizing field lim f ¢*d¢ = —, lim gdg = —
strength E,is the maximum field strength in the guide, B—w Jyo 2 Boaw Jy ™
when fors>Oande> 1. (27)

cC=1
D=1

if ps + p5s < w/2
if ps + ps = /2. (22)

The asymptotic values for the characteristic impedances
are easily obtained for these two modes with

@)+

lim

B—

foralleand 6 (23)

For e=1, =0, 6=1 one obtains the expressions for
the empty or homogeneously filled waveguide

1 /7\2 B & B
Za=~‘—)Zo—~—:ZU=2Z0—2 b

(28)
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For B—» and 6 >0, ¢>1 one obtains

1/x\*> 1 & 1 X

ZrL‘:—— — Zo“’:—v Zy == 220——_’—7
2 \2 Ve 2d Ve 2d
2dh

where 2d% is the cross section of the dielectric slabs. At
relatively high frequencies, all the power flow is con-
centrated in the dielectric slabs.

COMPUTER RESULTS

Normalized cutoff frequencies have been calculated
for TE,, modes of the guide of Fig. 1 withn=1, 2, 3,4, 6
for six relative dielectric constants (2.25, 4, 9, 12.25,
16, 25), fifteen slab thicknesses (including 097 and 1009,
filling factor), and a maximum of eleven positions of the
slab in the guide. Normalized propagation constants
have been calculated for TE;, and TE. modes between
their respective cutoff frequency and a frequency some-
what above the second- and fourth-order mode cutoff
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frequency of the empty guide, respectively-—again for
the relative dielectric constants given above, five slab
thicknesses (5, 10, 15, 25, 409, filling factor), and a
maximum of eight slab positions. The position parame-
ter «+6/2 gives the distance between the left guidewall
and the center plane of the left slab as a fraction of half
the guide width. For the odd modes the position is
varied between the slabs touching the guidewalls
(a+498/2=46/2) and the slabs touching each other in the
center of the guide (a+6/2=1—6/2). For even modes
it suffices, because of the symmetry of the field distribu-
tion, to vary the position between the slabs touching the
wall and moving them half way toward each other
(¢+8/2=0.5). For even modes the cutoff frequencies
and propagation constants are the same for a+6/2=r
and a+6/2=1—7.

The results for the full range of parameters are given
numerically and graphically in a General Electric pub-
lication [16]. In this paper, selected results are presented
graphically. Normalized cutoff {requencies are shown in
Fig. 3. Normalized propagation constants are shown
in Fig. 4.

T T T T T T T T T T T T T T T T T
. TE6O /] o | TEEO /|
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- 98Kz 74 8 .
o7 3
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- S~ _o0s 7 4 2 L So— |40~ =
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Fig. 3. Normalized cutoff frequencies with normalized slab thickness (8) as parameter.
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Fig. 4. Normalized propagation characteristics with normalized slab position («+38/2) as parameters.
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Examples

a) Guide WR 137, width 1.372 inches, two slabs each
0.069 inch thick, 0.137 inch between left wall and
center of left slab, relative dielectric constant e=9,
w=width/2=0.686 inch, 8=0.1, «+8/2=0.2.
Wanted: TEw and TEy cutoft frequencies and
guide wavelengths at 5.46 GHz.

One finds BC(TEm) ~ 144:, Bc('rEgo) ~2.31. VVIth
e =2mw/B, one obtains N, (TE1) = 7.6 cm, N\.(TE)
~4.74 cm, and f.(TEw)=~3.95 GHz, f.(TEs)
~6.2 GHz. At 546 GHz one finds B=2 and
K(TEw)=1.38, corresponding to \,=27w/K
~6.94 cm; no propagation for the TEy mode.

b) Guide WR 90, width 0.9 inch, one slab with
€e=16, 0.090 inch thick, 0.45 inch between wall
and center of slab. Wanted: cutoff frequencies of
the two lowest-order modes and guide wavelength
at 10 GHz for the lowest-order mode. w’ =width
=0.9 inch, 6=0.10, «a+6/2=0.5. B.(TEy’")
= B,(TEy) of guide with two slabs and width 1.8
inches and w=width/2.

One finds B,(TEw)=1.51, B,(TEy') = B.(TEuw)
~5.82. With N\,=27w’/B,. one obtains A (TEy’)
~9.52 cm, MN(TEy')=2.46 cm, and [ (TEy")
~3.16 GHz, f,(TE.’)=~12.45 GHz. At 10 GHz
one finds B =2mw’/A~4.8 and K=~13.03, yielding
N=1.1 cm.

c) The TE,, solutions with «-46/2=0.5 are equiva-
lent to the TEy solutions with the two slabs
touching each other, where oa46/2=1-6/2,
ie, 2K(TEw, B, a+d8/2=1-68/2)=K(TEsy,
2B, a+68/2=0.5), 2B (TEn, «a+8/2=1-58/2)
= B,(TEw, a+8/2=0.5).

DiscussioN oF RESULTS

The influence of a thin slab on the cutoff frequencies
(Fig. 3) becomes stronger the closer the slab is placed to
the lines of maximum electric field strength in the empty
guide. With increasing slab thickness this influence is
less and less related to the empty guide field distribu-
tion. For thick slabs it is weakest when the slabs touch
the guidewalls; for odd modes it is strongest when the
slabs are in the center of the guide and touch each other,
and for even modes it is strongest when each slab is in
the center of half a guide width. At a certain thickness
the cutoff frequency is nearly independent of the slab
position (see TEszo,40,60)-

The effect of the dielectric slab on the field distribu-
tion in the waveguide is to concentrate within the slab
with increasing frequency an increasing fraction of the
total energy flowing through the guide. The phase veloc-
ity approaches asymptotically 1/+/¢€ times the velocity
of light in free space. The parametric dependence of the
E-field distribution is illustrated by Fig. 5. An interest-
ing effect occurs when propagation characteristics cross
over each other, as seen in Fig. 4 for e=25, §=0.10. If
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Fig. 5. Normalized E-field distribution in waveguide with
dielectric slabs.

the empty regions in half the waveguide (I and III,
a and v in Fig. 1) are not equal, a wave may treat them
at high frequencies as essentially equal with the value of
the narrower region. This waveguide shows then a larger
propagation constant and field concentration at a given
frequency than a guide with =% does. An E-field
distribution for such a case is shown in the lowest part
of Fig. 5.

In the case of thin slabs, where the cutoff frequencies
for higher modes are strongly influenced by the empty
guide field distribution, the propagation characteristics
for a given e and 6 may all cross in one point. At that
frequency the propagation constant is independent of
the slab position (see [16], TEyw, e=9, §=0.2). Employ-
ing lossy dielectrics one may use the frequency-depen-
dent field concentration to construct dissipative field dis-
placement filters {17].

Examples of the parametric dependence of mnor-
malized characteristic impedances

h y/
2 = Z1/<Z0 —h) and gz, = Z,,/(Zo —~>
2w 2w

are given in Fig. 6. Examples of the parametric depen-
dence of the fractional bandwidths, i.e., the ratios of
cutoff frequencies

_ B(TEx)
B,(TE;)
are shown in Fig. 7.

_ B.(TEy)

and 942 =
B.(TE30)
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The ratio of the magnetic field components, the ellip-
ticity,

ELL(¢) = H.(¢)/jH,($)

at the slab boundaries I/II and I1/I1I approaches unity
asymptotically, as illustrated in Fig. 8 for TEy; and
TEg modes for various parameters.
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